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Abstract 

Utah Valley Hospital (UVH) implemented a stereotactic radiosurgery (SRS) program as an 

additional line of service. SRS as defined by the American College of Radiology is radiation 

therapy delivered via stereotactic guidance with approximately 1 mm targeting accuracy to 

intracranial targets in 1-5 fractions. Effectively implementing the SRS program at UVH requires 

the adoption and implementation of hardware and software technologies, a review of the 

clinical workflow with appropriate quality assurance tests, and the assessment of additional 

technologies that will further enhance the capabilities of the program. The scope of this work is 

to include a comprehensive writeup of the work that has been performed to implement the SRS 

program at Utah Valley Hospital.  
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Introduction  
 

Stereotactic radiosurgery (SRS) as defined by the American College of Radiology is radiation 

therapy delivered via stereotactic guidance with approximately 1 mm targeting accuracy to 

intracranial targets in 1-5 fractions.1 This treatment technique was initially developed to treat 

arteriovenous malformations, meningiomas, and acoustic neuromas.2 Over time the treatment 

technique was further expanded to include malignant tumors, such as gliomas & brain 

metastases; functional disorders, such as trigeminal neuralgia; and movement disorders, such 

as essential tremors.2,3 Neurosurgeon Lars Leksell is considered the pioneer of radiosurgery 

treatment where he proposed using small fields of radiation to treat structures in the brain 

instead of the conventional stereotaxic treatment technique.4 The conventional technique 

involves inserting a needle electrode into a targeted brain structure and performing 

electrolysis.4 Leksell's proposal led to the development of the Gamma Knife, which is a 

noninvasive stereotaxic radiosurgery device that uses many beams of gamma radiation to 

accurately administer a high dose of radiation to a single spot.5 

To this day, Gamma Knife is still considered the gold standard for SRS treatments, 

however, historically; there have been a variety of longstanding criticisms regarding the use of 

this device that are still prevalent. To ensure accurate delivery of the radiation, the absolute 

positioning of the patient must remain fixed starting from when the patient’s planning images 

are acquired up to treatment delivery. This requirement is met by affixing a frame to the 

patient’s cranium which has been reported as a traumatic experience by patients, in addition to 

the increased risks of bleeding and infection.6 Head frames present additional challenges such 
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as requiring additional patient management from the nurse(s) & physician(s) involved, and the 

possibility of frame slippage occurring which may result in a compromised treatment.6    

With the advent of new technology such as 3-D image guidance, a 6 degree of freedom 

(DOF) couch, & surface tracking, there has been a shift in frame-based SRS treatment 

techniques to frameless. Furthermore, there has been an increase in the utilization of LINAC 

based SRS treatments using either multi-leaf collimators or cones. Several vendors have 

incorporated frameless techniques in conjunction with their radiation therapy devices. For 

example, the Cyberknife from Accuray, the TrueBeam by Varian, and the Gamma Knife by 

Elekta have all incorporated frameless techniques.5,7,8 

Utah Valley Hospital (UVH) in Provo, Utah has recently (as of 2017) acquired a TrueBeam 

equipped with flattening filter (FF) & flattening filter-free (FFF) beams, kV/MV image guidance, 

120 leaf MLC, cones, the Encompass immobilization system,9 a 6 DOF couch, and surface 

tracking. With the acquisition of the TrueBeam and supporting equipment, UVH has undertaken 

the task of incorporating the SRS treatment technique into their clinical practice.   
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SRS Clinical Workflow  
 

Successfully delivering a radiotherapy plan, considering the numerous steps, numerous 

personnel, and the intricacies of each step, is a feat. Also, further challenges arise in the clinical 

workflow when considering that a diverse range of technologies are integrated together. 

Despite these factors, UVH successfully implemented a SRS clinical workflow, as presented in 

Figure 1. 

 

 

Figure 1 - SRS CLINICAL WORKFLOW 
 

 UVH's mission is to help people live the healthiest lives possible.10 It was recognized that 

to ensure this goal, the department needed to incorporate many properties that indicate a 

workflow of high quality. Properties that were considered are the following: efficiency 

throughout the entire process, consistency at each step, more than 1 individual is trained at any 
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step in the clinical workflow, and the progress at every step is tracked. Significant efforts have 

been undertaken by the department to include these properties. For example, more than 1 

therapist is capable of independently performing a CT simulation. An example of consistency is 

the physicists rely on a checklist when reviewing a plan that is ready for treatment approval. 

The benefit of having the checklist ensures that all SRS plans are subject to the same vetting 

process. An example of efficiency in the clinical workflow is the use of carepaths. Carepaths 

allow the department to track the status of the SRS treatment plan, and it notifies the 

appropriate individual(s) when their task or contribution is needed.    

 The workflow begins with the patient meeting with the physician for a consultation. 

During the consultation, the physician may review items such as the medical history, the 

current medical condition of the patient, prior imaging scans, the diagnosis, and other health 

related items. If the patient is determined to be a candidate for radiation therapy, the physician 

will discuss treatment options and what to expect during their course of treatment.  Following 

the consultation, the patient is scheduled for a computed tomography (CT) simulation and to 

undergo a magnetic resonance imaging (MRI) exam.  

Computed Tomography Simulation & Magnetic Resonance Imaging  
 

To define targets and organs at risk (OARs) for a SRS radiotherapy treatment plan, CT and MR 

DICOM image sets are needed. Following the CT simulation, CT images are acquired of the 

patient. This process begins with the therapist working with the patient to create 

immobilization devices to limit the patient’s movement during treatment and to provide 

support devices that ensure a comfortable, reproducible setup. First, the patient is asked to lay 

in a head first supine position on the Encompass system (See Figure 2) which is placed on the CT 
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table. Also, a head-cup rest, adjustable pegs for the hands, and a knee sponge are included to 

provide structural support.  

 

 
Figure 2 - ENCOMPASS SRS IMMOBILIZATION SYSTEM 

 

Next, a Qfix thermoplastic mask system is created.9 The mask, as seen in Figure 3, consists of 

two components: an anterior and posterior piece.  

 

 
Figure 3 - QFIX FIBREPLAST MASK 
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To create the mask, it is first heated in a water bath, and then it is molded to the surface of the 

patient’s cranium. The mask is held in place until it cools and stiffens. The back piece is created 

first as it integrates into the Encompass immobilization system. This process is repeated for the 

anterior portion of the mask. The anterior portion of the mask also includes adjustable shims in 

0.5 mm increments that can be loosened or tightened to account for slight changes in the 

patient’s anatomy throughout their course of treatment. Additionally, the anterior mask 

component includes an open orbital region, which allows for surface tracking during treatment 

using the VisionRT system.11 Once the mask is created, a CT scan of the patient’s cranium is 

acquired. The SRS scan protocol consists of 0.8 mm thick slices with a scanning length from the 

most superior part of the Encompass structure to the inferior portion of the patient's cranium. 

This scan length ensures all the necessary anatomical and support structures are accounted for 

in the planning CT. Additionally, a high mAs of around 1300 per slice is used to improve the 

image quality, or more specifically, to reduce the mottle in the image. This increase in mAs 

results in an increase in the contrast to noise ratio.  

Ideally, on the same day, a 3T MR is also acquired of the cephalic region. Scans from the 

MR provide superior tissue resolution when compared to the CT. Once both image sets are 

acquired, the medical physicist will perform an image registration which superimposes the 

anatomical information from the MR onto the CT. First the physicist will take advantage of the 

auto-matching feature to perform a registration between the two images and there may be a 

few fine, manual adjustments. This image registration allows the Radiation Oncologist and/or 

the Neurosurgeon to accurately contour high-resolution target(s) and OAR(s) onto the CT. Once 
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completed, the case is sent over to the dosimetrists to create a radiotherapy treatment plan 

using the CT images. 

SRS Treatment Planning  
 

In creating a radiotherapy plan, dosimetrists usually use a 6 MV flattening filter-free (6X FFF) 

beam due to its sufficient depth into the cranium, its high dose rate (1400 MU/min), its sharp 

dose fall-off, and low neutron production.  To spare the normal tissue and to improve 

conformity the dosimetrists will include at least 500˚ of rotation in the gantry motion. This 

criterion is met by adding in 5 100˚ arcs or 1 360˚ arc with 3 oblique arcs. Avoidance sectors 

may be added to the arcs to avoid having radiation enter through the critical organs (e.g. the 

eyes). Adding in the avoidance sectors will result in less degrees of rotation. However, in such 

circumstances, additional degrees of rotation are added onto other arcs. The couch kicks are 

added in conjunction with the arcs. For example, if the dosimetrist adds in 1 360˚ coplanar arc 

with a couch kick of 0˚. Next, two noncoplanar partial arcs are added, one with a couch kick 30-

40˚ clockwise, and the other counterclockwise. Finally, the 4th arc is added with the couch 

rotated normal to the 0˚ position with a vertex arc. The collimator for all arcs is rotated (e.g. 

30˚) to reduce dose overlap from the multi-leaf collimator (MLC) interleaf leakage and tongue 

and groove effects. Upon adding the arcs, the dosimetrist will use an optimizer technique, as 

presented by the Radiation Oncology Department at the University of Alabama.12  This 

technique involves radially expanding from the planning target volume (PTV) by a known 

distance and creating a spherical contour. Three spherical contours are created and assigned a 

priority to limit the dose in that structure which results in lower doses delivered to the normal 

tissue. Figure 4 showcases an example of the spherical contours generated. 
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Figure 4 - SRS CONTROL SPHERES 

 

The radial distances used in generating each control sphere are listed in Table 1. 

 

Table 1 – RADIAL DISTANCES USED TO GENERATE CONTROL TARGETS 

Control Inner Surface Outer Surface 

Inner Edge of PTV_Total 5 mm from PTV_Total 

Middle  5 mm from PTV_Total 10 mm from PTV_Total 

Outer 10 mm from PTV_Total 30 mm from PTV_Total 

 

 

The dose constraints and their corresponding priorities for each control sphere are listed in  

Table 2. 

   

Table 2 - OPTIMIZATION SETTINGS 

Control Dose constraint Priority 

Inner Control Dmax < 98% of prescription dose 150 

Middle Control Dmax < 50% of prescription dose 100 

Outer Control Dmax < 40% of prescription dose 80 
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Although the guide for planning above represents the general SRS case, there can be 

variations in the planning process that will lead to deviations. The constraints and priorities may 

change depending on the treatment site, the treatment volume, the OARs, the OARS spatial 

location relative to the target(s), and other factors. Once a clinically acceptable plan is 

generated, the plan is evaluated for its PTV coverage and OAR sparring.   

One OAR constraint that is included in every SRS plan, is the volume of brain receiving 

12 Gy or more (�����).  Numerous publications,13–15 have reported on the complications 

following SRS treatment and one of those complications is radionecrosis. Symptoms associated 

with radionecrosis can include seizure, motor deficiency, cognitive deficits, and speech 

deficits.14 ����� is a dosimetric quality parameter that has been correlated to radionecrosis. 

Therefore, two planning objectives are added to the plan to track this parameter. The first 

planning objective reports on the ����� present in the brain while the 2nd objective is a 

conservative estimate which only includes the normal brain tissue (i.e. Brain sub PTV).  

In addition to the ����� constraint, there are three parameters that are tracked that 

provide feedback on the quality of the plan. The three metrics are conformity index (CI), 

Paddick gradient index (GI), and homogeneity index (HI). The goal is for the CI to be equal to 1 

which indicates the volume of the prescription isodose line is equal to the volume of the PTV. A 

value less than 1 indicates the PTV may be insufficiently covered by the prescribed dose. While 

a value greater than 1 indicates that the prescription isodose line volume is covering more than 

just the PTV but also nearby normal tissue. A visual scroll through is performed by the reviewing 

staff to ensure that the 100% isodose line volume is superimposed on the PTV volume. The 

equation used to calculate CI is presented by Equation 1.  
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�	 =  �
�
����

                   [1] 

��� – Volume of the prescription isodose line in ccs 

���� – Volume of the PTV in ccs 

 

 A high dose fall-off outside the PTV or in the normal tissue is highly sought after. The GI 

is calculated to characterize this dose fall-off. The GI is calculated by taking the ratio of the 

volume of the 50% isodose line to the volume of the 100% isodose line. The equation used to 

calculate this metric is represented by Equation 2.  

�	 =  ���%,   
�
����%,   
�

                   [2] 

���%,   �� – Volume of the 50% prescription isodose line in ccs 

����%,   �� – Volume of the 100% prescription isodose line in ccs 

 

Homogeneity index, the final metric, is an additional metric to assess the dose fall-off and the 

magnitude of the hot spot relative to the prescription dose. Equation 3 is used to calculate HI.  

 	 = !"#�
!
�

           [3] 

$%&�  – The maximum dose  

$��  – The dose prescription for 1 fraction  

 

With an ablative dose delivered, the hotspot inside of the PTV is of less concern. Instead a 

greater hotspot can be advantageous as the dose fall-off outside the target can be greater than 

a dose profile that is relatively flat. This concept is illustrated in Figure 5.   
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Figure 5 - HOTSPOT RELATION TO DOSE FALL-OFF 

 

In Figure 5, the orange line represents a plan with a greater dose in the center of the target and 

is followed by a sharp fall-off. As compared to the blue line which has a relatively low dose in 

the center and has less of a dose fall-off. If the length of the PTV is the same distance as the 

intersection point between the two curves, as seen in Figure 5, and both curves encompass the 

target with 100% of the prescribed dose, the orange line is most beneficial in providing an 

ablative dose to the target while sparring the surrounding healthy tissue.   

After creating a SRS plan, the dosimetrist will review the plan with the Radiation 

Oncologist for any final changes before having the plan approved. Once the plan is approved, 

the physics team will generate patient specific QA plans. The plans generated include: a portal 

dosimetry plan, a film measurement plan, and an ion chamber measurement plan.  

Ion Chamber Measurement  

Prior to patient treatment, the treatment delivery is simulated to verify the absolute dose to a 

point (small volume) and the corresponding MU. This is performed by using Standard Imaging’s 
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stereotactic dose verification phantom with a cavity drilled for placement of the Exradin A26 

ion chamber (IC).16 A verification plan is generated where the beam parameters (MLC 

trajectories, energy, dose rate, etc.) from the clinical plan are computed on a CT dataset that 

includes the Standard Imaging phantom with the ion chamber. Upon calculating the dose in the 

phantom, the dose profile is evaluated on the axial scan in the anterior to posterior direction 

and in the left to right (lateral) directions. Ideally, the dose profile should be flat in all measured 

directions to avoid significant volume averaging effects. If the active volume is in a region of a 

high dose gradient, the isocenter of the treatment fields is shifted to a flatter dose region. 

Lastly, the plan is approved (planning approved) in Eclipse and scheduled as a QA plan which is 

to be delivered on the TrueBeam.  

To prepare for the IC measurement, the phantom is placed on the treatment couch and 

set to isocenter. Then it is centered using the light field cross hairs with a set field size of 10x10 

cm� and lasers. The A26 is placed in the cavity and connected to the electrometer by a triaxial 

cable. Figure 6 displays the phantom setup with the chamber in place. 
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Figure 6 - STEREOTACTIC DOSE VERIFICATION PHANTOM WITH A26 CHAMBER 

 

Next a reference MU of 100 is delivered to the phantom setup. This reference dose 

measurement is recorded in units of nC or mR, depending upon the electrometer used. Then 

the patient specific plan is loaded at the treatment console. Before beam delivery, a cone-beam 

CT scan is acquired and registered with the planning CT dataset to minimize setup errors. Then 

each arc is delivered to the phantom and the reading from the electrometer is recorded. The 

reference dose measurement and the reading(s) acquired from the patient specific plan can be 

used to calculate the dose measured in the active volume of the detector.  Equation 4 

represents the relation between the reference dose measurement to the plan dose 

measurement.  

$� = )*+�,- ∗ �/0#1
�234

�5��
67 100*:      [4] 

)*+�,-  – The tissue maximum ratio for a 10x10 ;<� field, for a known energy, depth 5 cm, set to 100 cm SAD 

+=>&? – The reading measured by the electrometer from running the patient specific planned field 

+�,- – The reading measured by the electrometer from a 10x10;<�, 100 MU, depth of 5 cm field 

$� – The calculated dose reading from the measured patient specific planned field  
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The TMR and reference reading, for the same setup, allows additional arc 

measurements to be calculated in units of cGy. The dose value ($�) is compared to Eclipse's 

dose predicted value. UVH's ideal and acceptable agreement for each arc measurement and the 

cumulative sum is within 3% and 5%, respectively.  

Performing the IC measurement presents a few advantages over other QA techniques. 

This technique allows for the determination of an absolute dose point comparison to the 

treatment planning system (TPS) whereas other QA techniques may only make relative dose 

comparisons. Additionally, temperature and pressure correction factors aren't required 

because the correction factor would cancel out due to +=>&? and +�,- both needing the 

correction. Other advantages of this technique are the integration of the CT images and imaging 

aspect into the QA process. Also, this QA technique involves a relatively simple calculation only 

requiring the use of a TMR for a standard field size and depth. Therefore, it limits the 

introduction of additional uncertainties. For example, if +�,- was measured off-axis and for a 

different field size then additional correction factors would have to be introduced and thus 

increasing the total uncertainty. There are a few disadvantages to this technique, in that the 

physicist needs a to spend time setting up and aligning the phantom. Additionally, the QA 

process is quite involved which can lead to greater possibilities of operator error. For example, 

when loading the QA plan at the treatment console there are options to set the couch rotation 

option to 0° throughout the beam delivery process. If the operator selects this option, it will 

lead to erroneous results as the QA plan includes couch rotation.  
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Portal Dosimetry  

Portal Dosimetry,17 supplied by Varian, is a software platform used to verify intensity 

modulated plans on the MV imaging panel. The panel, also known as the electronic portal 

imaging detector (EPID), is an amorphous silicon flat panel (aS1200) that extends from the base 

of the gantry to isocenter. The panel includes an active imaging area of 43.0 x 43.0 cm� with a 

pixel matrix of 1280 x 1280 and a spatial resolution of 0.035 cm (76 dpi).18 This resolution is 

sufficient in making small field dose profile comparisons. For comparison, the UVH film analysis 

is performed at 96 dpi and this dpi can be greatly increased (e.g. 12,800); although there is 

diminishing returns as the dose gradient is already well characterized.  

 The radiation plan is delivered to the panel and the signal generated is recorded. During 

delivery, the couch remains at 0° and the gantry rotates with MLC/jaw motion, dose rate, 

energy, etc., as it would for the patient treatment delivery. This measurement method falls 

under the category of a perpendicular field-by-field analysis as classified by TG-218.19 The 

recorded information (fluence) is represented in a matrix of pixels calibrated in units of 

calibration unit (CU). This matrix of CUs can be compared to a predicted dose distribution 

created in the software. The software component consists of a 2-D convolution portal dose 

image prediction (PDIP) algorithm that predicts the fluence delivered to the EPID. The 

measured and predicted fluences are compared in the Portal Dosimetry workspace using the 

gamma analysis test. This graphical user interface comparing the measured and predicted 

fluences is displayed in Figure 7. 
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Figure 7 - PORTAL DOSIMETRY WORKSPACE: GRAPHICAL USER INTERFACE 

 

The gamma analysis criteria consisted of a dose difference and distance-to-agreement of 1% 

and 1mm, respectively. This gamma analysis showcases that 99.9% of the points compared 

have a gamma value less than 1. It should be noted that for the analysis of each arc, it is split 

into multiple subarcs. The arcs are split to avoid masking potential dose delivery errors in a 

composite dose analysis.  

 The advantages of performing the PD QA is it is integrated into the software of the 

department's TPS and LINAC. For example, the PD plan can quickly be computed in the Eclipse 

workspace within a few mintutes. Then if the therapists have a ~5-10 minute open timeslot, 

they can perform the QA as it only requires the MV imaging panel to extend and doesn't 
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require the setup of a phantom. The disadvantage to using this QA technique is it isn't exactly 

independent from the LINAC system and it doesn't include the couch rotations in the QA plan. 

Setting up a Portal Dosimetry QA program requires commissioning the PDIP algorithm 

and calibrating the MV panel. The following is required to calibrate the hardware: a dark field 

calibration, a flood field calibration, and an imager dosimetry calibration.17 The dark field 

calibration consists of measuring the response of each detector without the beam turned on 

and setting this value to 0. Then a flood field calibration is acquired where the gain of each pixel 

is adjusted to produce a uniform image intensity. These two calibrations must be done for each 

energy and dose rate combination. Afterwards, a dosimetric calibration is performed consisting 

of a beam profile correction and a dose normalization. The beam profile correction is applied by 

introducing a diagonal profile that reintroduces the non-flatness of the beam. For the dose 

normalization, a CU is assigned for a 100 MU 10x10 cm� field. Lastly, configuration of the PDIP 

algorithm requires intensity profiles, fluences, absolute calibration parameters, and output 

factors.17    

Film Calibration  
 

In addition to portal dosimetry, film is also able to verify the accuracy of the relative dose plane 

with the added benefit of being an end to end (E2E) test. Film QA is categorized as an E2E test 

as it includes processes from start to finish (e.g. CT simulation to plan delivery). Film has 

additional advantages over other available QA tools in clinic which includes the films near tissue 

equivalence, its self-developing property, the affordable pricing, the range of dose response, 

and most importantly, its micrometer resolution. The delivery of the film in the phantom allows 

for a true composite method (dose measurement method).19 All beam delivery and machine 
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parameters are kept the same as the original patient plan when irradiating the phantom except 

for the total MU due to the limited dose range of the film. Therefore, the total MU delivered to 

the film is scaled down.    

The film used in performing the pretreatment quality assurance is Gafchromic RTQA2 

film.20 It is advertised for the use of LINAC QA (e.g. light/radiation field coincidence, starshots, 

etc.) and has been adopted into the clinic due to its ample abundance. The Gafchromic film 

consists of 4 layers, first a yellow polyester, a pressure sensitive adhesive, an active layer, and a 

white polyester. The active layer displays a significant change in optical density (OD) following 

irradiation, which can be correlated to a known dose. 

 To compare a measured axial plane of dose to the TPS, a sensiometric curve is required 

to convert OD to dose. This curve is generated using the fragment calibration method which 

involves irradiating film pieces with a known dose varying from 0 to 400 cGy. This dose range 

was selected to operate in the region to be more sensitive to the change in OD per change in 

dose.  Following irradiation, the film pieces are scanned, and the OD is measured using 

ImageJ.21  Then a 4th order polynomial trendline is fitted to the measured OD to establish the 

correlation to dose. The sensiometric curve generated from the fragment calibration method is 

shown in Figure 8.  



www.manaraa.com

 

19 
 

 
Figure 8 - SENSIOMETRIC CURVE 

 

 An axial dose plane from the patient plan is measured on film by creating a verification 

plan in Eclipse that takes the field parameters and recalculates the dose onto stereotactic dose 

verification phantom with a film slab instead of the ion chamber slab. Figure 9 displays the film 

being positioned onto the blue slab (a piece of the stereotactic dose verification phantom) and 

then with the top plate screwed into place.  
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Figure 9 - LOADING THE FILM INTO THE STEREOTACTIC DOSE VERIFICATION PHANTOM 

 

This phantom, with the embedded film, is set up in the treatment room and a CBCT scan is 

taken to further align the phantom to the expected treatment position. Once in position, the 

phantom is irradiated using the same treatment parameters in the clinical plan except with the 

MU scaled to the dose range of the film. Afterwards, a square film (~6.35 cm x 6.35 cm) is 

placed on a 5 cm thick solid water block. The film is aligned to the light field crosshair and an 

additional 5 cm solid water block is placed on top. The SSD is then set to 95 cm which places the 

film at isocenter. This film fragment is irradiated to a known dose, and it used to scale the 

sensiometric curve when calibrating the axial plane of dose film. 

 The three pieces of film scanned on the Epson 10000 XL scanner include: the axial dose 

plane, film fragment(s), and a background film. Since, multiple films are to be scanned, they are 

centered on the scanner and placed in a vertical fashion where the aggregate of films form a 

straight line that is parallel to the scan direction.22 As previously reported,23–25 lateral scan 

effects (LSE) can be created due to the scan field being ununiform, which can lead to significant 

discrepancies between the expected OD of the film and the measured OD. This effect was 
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investigated by taking two scans of the same irradiated film at the center and at the edge of the 

scanner. It was found the LSE is negligible for all films scanned at the center.  

  The film fragment irradiated after the axial dose plane film is loaded into ImageJ. The 

OD from the film fragment is measured and compared to the expected OD from the 

sensiometric curve of the same dose. The ratio of these two values is taken and used to scale 

the entire sensiometric curve, which is then used to calibrate the film with the axial dose plane 

from OD to cGy. Once the dose plane film is scanned in, it is also loaded into ImageJ. The film is 

cropped and split into the three-color channels (RGB) where the red channel is selected and 

edited for the remainder of the film analysis. The red film channel is shown to have a greater 

change in OD per unit of dose than the other two channels.22  This effect is desirable as the film 

displays the greatest sensitivity to changes in dose. This effect is preferable when compared to 

the extremes. The first extreme is that the film is highly insensitive to the delivered dose, thus 

resulting in the noise drowning out the sensitivity of the delivered dose. Additionally, the 

scanner may be limited by its color bit depth where it would be unable to detect a slight change 

in the OD. The other extreme would be that the film is highly sensitive to ionizing radiation 

where other ambient radiation can add additional noise to the film. The dose plane films matrix 

of OD is then calibrated (units from OD to cGy) using the newly created sensiometric curve. 

Next, a 3D median smoothing filter with a radius of 3 pixels is applied to smooth out any 

existing film defects and any scanner and scanner bed artifacts that may be the result of 

imperfections in the glass or dust particulate.  

Then, the matrix of dose from the film QA is exported and it is formatted before it can 

be imported into Portal Dosimetry (PD). Additionally, the axial dose plane corresponding to the 
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center of the film from the verification plane (from the QA plan) is also exported from ImageJ 

and formatted before importing into PD. PD was originally designed with the intent of 

comparing the measured dose from the EPID to the PDIP algorithm. However, in its simplest 

form, PD is just comparing two matrices of data via a gamma analysis. Therefore, the film is 

formatted in a manner that allows for the PD software to read the file information and to allow 

comparisons of the film to an axial plane of dose. A drawing exchange format (.dxf) file is 

required to successfully import the file. There are a few items that must be specified in the 

header of the file. Those items include the matrix size (image dimensions, e.g. 512 x 512) and 

the resolution of the image. Extra information that isn’t required to import the file, but it is 

important from an accuracy standpoint, includes the patient’s name, id, the field size, the 

energy, and other miscellaneous details. The complete file header is included in Appendix A. 

After the file has been appropriately formatted, it can then be imported into the PD workspace. 

Finally, a gamma and visual profile analysis is performed by comparing the measured dose 

distribution to the TPS calculated dose distribution. Figure 10 displays an example of this 

comparison.  
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Figure 10 - PORTAL DOSIMETRY: FILM COMPARISON 

 

For this gamma analysis (in Figure 10), a distance-to-agreement and dose difference tolerances 

of 1 mm and 5%, respectively are used. A normalization mode of relative was set with the 

option of minimizing the difference between the two datasets. In this comparison, one of the 

most important parameters, is ensuring the dose fall-off agrees. The Portal Dosimetry analysis 

can also assess dose fall-off. However, the film workflow includes components that are more 

representative of a SRS case. For example, this film analysis involves delivering the patient's 

plan onto a CT dataset that includes the phantom and film, while the PD QA doesn't include a 

CT dataset. Additionally, couch walkout uncertainties are included in this test. Lastly, the 

comprehensive writeup regarding the entirety of the film QA process is included in Appendix A. 
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IMSure 
 

IMSure16 is a secondary independent calculation software that compared its calculated MU and 

dose to a point against the TPS. After the planning approval step, the dosimetrist will export the 

plan information and CT dataset into this software to make the comparisons. This is done for 

every SRS case prior to treatment. This software is a 3-source model developed at Stanford 

University that models scatter from the main photon source, the scatter from the flattening 

filter, and the scatter created by the main collimators. Once the plan has been planning 

approved, the QA has been performed, and the IMSure check has been calculated, the case is 

sent over to the physicist for review.  

Physicist Plan and Contour Review 
 

Prior to treatment delivery, the physicist will perform an initial chart check of the patient's plan. 

This check is performed to, "ensure compliance with the prescription, no clinically significant 

deviations are present, and that all information necessary for the therapists to deliver the 

treatment has been provided".26 When OAR contours are completed, the physicist will review 

those structures. Items that are reviewed include: if density overrides were used (if applicable), 

the use of high-resolution segments, verifying the body contour, if the user origin is set 

correctly, and the contour accuracy. Checking the contours ensures the plan is most 

representative of the patient anatomy, and to prevent undesirable consequences. For example, 

if there is discontinuity between the brain stem axial slices, the fluence optimizer may try to put 

some amount of dose through that axial slice to aid in covering the PTV. After contour review, 

the physicist will perform an additional review but of the treatment plan once it has been 

approved by the physician. During this check, the physicist will perform a comprehensive 
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evaluation of the plan and available documentation. The physicist will review the physician's 

prescription and if the plan follows it. There is review of the documentation such as diagnostic 

scans/reports, pathology findings, previous radiation treatment (if applicable), and if the 

patient has consented to the treatment. Next the plan quality and pretreatment QA is 

evaluated. The physicist will review the PTV coverage, OAR sparring, the SRS plan metrics (e.g. 

CI), isodose lines, if the appropriate imaging is added, and reasonable MUs for the dose 

prescribed.  

 Lastly, the physicist will review the pre-treatment QA tests and the 2nd independent 

check to determine if there are any items that require further investigation prior to treatment. 

For example, in the film analysis, the relative dose fall-off measured from the film is compared 

to the TPS dose fall-off via gamma analysis. If for example, there was a considerable 

discrepancy in the two dose fall-offs, this would serve as an alert to the physicist to investigate 

this finding. One cause of this discrepancy, for example, might be due to a MLC positioning 

error. Once the plan is deemed acceptable and all potential items of concern have been 

addressed, the physicist will approve the treatment plan.  

Treatment Procedures  
 

Once the physicist has reviewed the patient treatment plan along with the results of the QA 

and if the plan is deemed clinically acceptable, the plan is ready for treatment delivery. On 

treatment day, the Encompass SRS Immobilization System is placed onto the 6 DOF couch using 

the lock bars. Then the patient is asked to lay on the system in a headfirst supine position 

mimicking the setup during the CT simulation. The ancillary devices used during the CT 

simulation are also included, such as a plastic headrest, toeband, and/or a knee cushion. The 
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QFix Encompass mask, created during CT simulation, is placed onto the patient’s head with a 

shim setting of 2 (the default setting). If the mask is too tight or too loose, the shims are 

adjusted until a very snug but tolerable fit is achieved.  The therapists in the room will make the 

appropriate marked isocenter shifts in the vertical, longitudinal, and lateral directions to the 

planned isocenter. Additionally, the therapists will simultaneously interface with the VisionRT 

system to assess if any residual shifts remain and if there are any rotational shifts that need to 

be addressed. The VisionRT system is continuously left on to achieve a steady thermal state 

which results in improved sub-millimeter stability while monitoring treatment delivery. 

After the patient has been setup on the couch and VisionRT agrees with the spatial 

location of the patient, the therapists will exit the vault to perform imaging. At this point, the 

physicist is called into the console area to oversee the imaging. First, a CBCT scan is acquired to 

perform an image registration between the planning CT and the current patient setup. An auto-

matching tool in the image registration software is used to easily address any remaining 

translational and rotational misalignments. After the registration is reviewed by the therapists 

and the physicist, the shifts are made and a 2nd CBCT scan is taken with the physician present.  

An advantage to taking a 2nd CBCT other than confirming the shifts, is to also verify the 

clearance between the gantry and the patient and support structures while the couch is at 0°. 

At the same time, a reference surface is captured on the VisionRT system to record the current 

spatial location of the patient and to monitor for any deviations from the CBCT based alignment 

throughout the course of the treatment. The physician and physicist will jointly review the 

overlaid CBCT images to verify the alignment of the patient. If the images agree, an AP MV 

image is taken using the EPID panel to confirm alignment of the skull as a final, independent 
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verification before delivering the beam. The use of the MV panel allows for verification of the 

CBCT imaging alignment system, thus confirming the patient is in the correct setup position. 

The AP MV image is most sensitive to misalignments in the lateral and superior/inferior 

directions. Vertical misalignments may manifest as a magnification error between the two 

image comparisons. It could be argued that a lateral (orthogonal to the AP image) MV image 

would highlight possible vertical alignment discrepancies. However, with the verification of the 

spatial alignment of the patient with the MV image and the initial feedback from VisionRT, it is 

deemed that the lateral MV image would provide little benefit. Once these images are 

determined to also match, the treatment delivery begins. Throughout the course of treatment, 

the VisionRT shift readouts are closely monitored. In the event there was a sustained shift 

greater than 1mm, the beam is immediately turned off, and the patient is reimaged with a CBCT 

scan at a couch angle of 0° to verify the accuracy of the patient's spatial alignment. Additionally, 

to expedite the time of treatment, the couch and gantry angles are ordered in a sequence that 

reduces the total rotational time. For example, if there are 4 couch angles, 0°, 45°, 90°, and 

315°, the first couch angle will be 0°, since it is easiest to acquire a CBCT scan. The remaining 

couch angles will then occur in the following order, a 45°, 90°, and 315°.  

  



www.manaraa.com

 

28 
 

Commissioning  

The Acuros External Beam Algorithm27 (Acuros XB 15.6.05) is used in calculating dose 

distributions for stereotactic cases. The algorithm deterministically solves the linear Boltzman 

transport equation. This algorithm is known for its quick, accurate dose calculation, especially 

with GPU acceleration. Uncertainties in the XB algorithm arise from the discretization of 

solution variables in space, angle and energy.27 Additional uncertainties exist in how the 

algorithm handles charged particle coulombic interactions. An overview of the calculation 

steps, as provided by Varian,27 is included below. 

1. Creating a physical map material 

2. Transporting the components of the photon beam source model (primary and 

secondary photon source, and electron contamination source) into the patient 

3. Transporting the scattered photon fluence in the patient  

4. Transporting the electron fluence in the patient 

5. Calculating the desired dose mode (dose to medium or dose to water) 

As seen in the first calculation step, Acuros requires the mass density and material for each 

voxel which is supplied by Eclipse through a conversion of HU values. 

Before any radiation transport in the patient medium, the radiation from the head of 

the linear accelerator must be characterized. As outlined in the Eclipse Photon and Electron 

algorithms reference guide, 27 there exists an accurate parameterized model of the radiation 

output from the linear accelerator. The parameters of the model are modified by parameters 

inputted by the user to construct a customized phase-space specific to the treatment machine. 

For each LINAC energy, the phase space file defines the fluence and energy spectrum.  
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To commission this algorithm there are a variety of measurements that need to be 

inputted into the Beam Data workspace in Eclipse. The beam model at UVH was configured 

using the TrueBeam Representative Beam Data (TBRBD). Table 3 lists the required scans 

needed to configure the open field. 

 

Table 3 - SCANS REQUIRED TO CONFIGURE AN OPEN BEAM (ADAPTED FROM ALGORITHM REFERENCE 

GUIDE27) 

Measured Parameter Scan Axis Depth [cm] Field Size [@AB]  

Depth Dose Curves     Central Axis FS < 10x10, 10x10 

    10x10 

    

Intermediate Field 

Sizes.  

    Largest Field Size 

      

Profiles dmax, 5, 10, 20, & 30 cm FS < 10x10 

    10x10 

    Intermediate Field Sizes 

    Largest Field Size 

Diagonal Profile dmax, 5, 10, 20, 30 cm Largest Field Size 

      

      

Output Factor 5 cm depth ≤ 15 MV See Table 4. 

      

  10 cm depth for > 15 MV   

 

 

 

 

 

 

 



www.manaraa.com

 

30 
 

The list of field sizes for the output factors is listed in  

Table 4. 

 

Table 4 - OUTPUT FACTORS REQUIRED TO COMMISSION ACUROS (ADAPTED FROM ALGORITHM REFERENCE 

GUIDE27) 

Field Size 

[cm/cm] 3 5 7 10 15 20 30 40 

3 3x3 3x5 3x7 3x10 3x15 3x20 3x30 3x40 

5 5x3 5x5 5x7 5x10 5x15 5x20 5x30 5x40 

7 7x3 7x5 7x7 7x10 7x15 7x20 7x30 7x40 

10 10x3 10x5 10x7 10x10 10x15 10x20 10x30 10x40 

15 15x3 15x5 15x7 15x10 15x15 15x20 15x30 15x40 

20 20x3 20x5 20x7 20x10 20x15 20x20 20x30 20x40 

30 30x3 30x5 30x7 30x10 30x15 30x20 30x30 30x40 

40 40x3 40x5 40x7 40x10 40x15 40x20 40x30 40x40 

 

 

The beam data listed in Table 3 and  

TABLE 4 is compared to the TBRBD via gamma analysis. Once the data is in good agreement, the 

TBRBD is imported into the treatment planning system and used to configure the photon beam 

source model.  

Beam modifying information is also inputted into the TPS which includes but is not 

limited to the jaw transmission factor, the dosimetric leaf gap, & the MLC transmission factor. 

 Once all this data has been imported, the beam model is further configured by optimizing the 

parameters, listed in Table 5, to match the TPS’s calculated distribution with the measured 

distribution. 
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Table 5 - MACHINE PARAMETERS TO BE OPTIMIZED 

Machine Parameters 

Photon Energy Spectrum 

Mean Radial Energy 

Location off virtual second source, X & Y collimator jaws, and MLC 

Relative intensity of the virtual second source, energy and size of the 

second source 

Material of flattening filter 

 

This step is performed by using an objective function consisting of a total gamma error metric 

and a penalty term. Similarly, to the comparison of the TBRBD to the measured data, this 

gamma error metric will compare calculated data points to measured data points by 

considering dose differences and distances to agreement. The penalty term is added into 

account for noise, increasing mean energy, an increasing intensity profile, and unphysical 

second source parameters.   

Lastly, the Acuros parameters set in calculating a dose distribution are displayed in 

Figure 11.  

 

 
Figure 11 - ACUROS XB CALCULATION SETTINGS 
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A calculation resolution of 0.125 cm is selected to provide a better representation of the dose 

differential across the medium, especially at inhomogeneous interfaces. Lastly, to ensure an 

expedient calculation time, GPU acceleration is turned on.  
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VisionRT  

SRS treatments deliver a limited number of fractions (e.g. 1-5 fractions) to their target with 

tight margins to the CTV (0-2 mm) with a high dose of radiation. A potential miss of the 

target(s) can lead to damaging nearby healthy tissue with the risk of irreversible effects to the 

patient. Additional challenges arise when the targets are adjacent to a critical structure such as 

the brainstem, which is commonly seen when treating the trigeminal nerve. These risks are 

further exacerbated when treating patient with a frameless mask where there is the possibility 

of movement from the patient during treatment delivery.  

One method to minimize such risks is to incorporate the use of surface tracking. Utah 

Valley Hospital uses surface guided technology (VisionRT) for all SRS cases. The Vision RT 

system consists of a three-camera pod system that uses stereoscopic video images and a 

speckle pattern projected onto the patient’s surface to continuously capture and reconstruct 

maps of the patient’s surface.28 Additionally, this technology compliments the Encompass mask 

system as the mask has an opening around the eyes to allow for surface monitoring of the 

patient. The system’s software then makes a comparison of the reference image to the current 

patient’s setup and the discrepancies between the two are reported out as translational and 

rotational shifts. Therapists use this information to accurately shift the couch and the patient 

into the correct treatment position and to monitor for any sub-millimeter movements that may 

occur during the radiation delivery.  

To ensure that the camera pods have not shifted relative to each other, daily QA is 

performed before any patient treatment.11 Additionally, monthly QA for the VisionRT system is 

performed to calibrate the camera pods to the treatment room isocenter. The second part of 
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the monthly QA is to calibrate the cameras’ ability to track surfaces above isocenter. This 

calibration procedure should be performed in approximately the same lighting as when patients 

are treated to avoid erroneous feedback from the system. Lastly, periodically and following any 

Vision RT camera system upgrade, a MV isocenter calibration is performed. Performing the 

recommended QA tests of the VisionRT system ensures the system is able to accurately predict 

the shifts needed to correctly setup the patient and serves as an independent check tool for the 

therapists.  

Per TG-147's recommendation,28 the effects of thermal drift on the VisionRT system was 

characterized. When the cameras are actively monitoring the location of a static object, the 

VisionRT system will display a spatial drift in its readout of the object's location. This 

phenomenon was confirmed by setting up a Styrofoam mannequin head on the treatment 

couch, capturing the current position of the head with the cameras, and monitoring its location 

over time. The results for VisionRT's translational thermal drift are displayed in Figure 12. 

 

     

Figure 12 - CHARACTERIZING VISIONRT'S THERMAL DRIFT 
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The results suggest that in ~10 minutes the thermal drift of the VisionRT system approaches an 

asymptote. This test was performed twice. In the original setup, tape was used to hold the 

mannequin head in place. Since the translational shifts are being read out in millimeters, there 

was concern that over time the tension from the tape may diminish which might cause the 

mannequin head to slightly shift. Therefore, this test was repeated but without the tape; 

however, the 2nd iteration shows similar results to the first test. 
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Machine Specific Quality Assurance 

Since SRS delivers radiation treatments with a narrow margin of 1 mm (margin may slightly vary 

depending upon institution) in 1-5 fractions and with a high dose; it is imperative to 

characterize and to limit the uncertainties of each step and to compare with the standards 

recommended by a professional organization. Therefore, recommendations from the Medical 

Physics Practice Guideline (MPPG) 9.a. document endorsed by the American Association of 

Physicists in Medicine29 (AAPM) is commonly referenced to ensure a safe and well-understood 

treatment delivery process. Recommendations from the AAPM regarding C-arm LINAC QA tests 

are displayed in Figure 13 which includes the test and its associated tolerance.30  

 

 
Figure 13 - MEDICAL PHYSICS PRACTICE GUIDELINE 9.A. FOR SRS-SBRT30 
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Validation of the Beam Model  

Per MPPG 9.A, an end-to-end test was performed to assess the SRS clinical workflow, to 

evaluate the processes performed at each step and to evaluate the overall treatment accuracy. 

Additionally, this test was completed to serve as an independent audit on the current UVH SRS 

program. A head phantom embedded with TLDs, film, and fiducials was ordered from the 

Imaging and Radiation Oncology Core (IROC) group.31 After receiving the phantom, a Qfix mask 

was created for the phantom with the aid of the therapists. Next the phantom was scanned on 

the Phillips Big Bore CT using the SRS scan protocol. The scan protocol settings are listed in 

Table 6. 

 

Table 6 - CT SCAN PROTOCOLS FOR SRS H&N PHANTOM 

CT Parameters Value 

Thickness [mm] 0.8 

kV 120 

mAs/Slice 1305 

# of Images 368 

 

After importing the CT images into the contouring workspace, the following high-resolution 

structures were added: Lt and Rt Eye, Lt and Rt TLD powder, a spherical PTV contour 

(~Diameter of 1.9 cm), an external body contour (encompassing the phantom head and 

Encompass system), and the Encompass support structures. Additionally, the search body tool 

was used at a range of -600 HU to generate a surface structure to be used by the VisionRT 

system. A dosimetrist was tasked with creating a plan to deliver 25 Gy to the target with a 

maximum dose of 30 Gy. The plan was calculated using the AAA algorithm (Acuros was not 
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commissioned at the time) with a resolution of 0.1 cm and heterogeneity corrections turned 

on. 

 Per our defined pretreatment QA process, the plan was delivered and recorded on the 

EPID. In Portal Dosimetry, a gamma analysis was performed for each subarc with a dose 

difference and distance-to-agreement criteria of 1% and 1 mm, respectively. All comparisons 

had a gamma passing rate greater than 96%. 

Next, a point dose measurement was taken with the blue cube phantom. All 

measurements were within 5% with one measurement coming in just under 5%. The results for 

each measured arc are included in Figure 14.  

 

 
Figure 14 - BLUE CUBE +A26 DOSE VERIFICATION 

 

The disagreement in the 4th arc may be attributed to the active volume of the chamber 

measuring in a semi-steep dose gradient region which results in volume averaging or can be the 

result of the couch walkout being greatest at perpendicular angles to 0 degrees. Overall, the 

cumulative results are in excellent agreement. 
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After the physics team reviewed the plan, it was determined to be acceptable for 

treatment delivery. The phantom was setup in the Encompass system by the therapists with the 

guidance of VisionRT. Also, the attachable ears were placed on the outside of the mask as it’s 

used by IROC as an imaging background measurement. After the VisionRT values were within 

tolerance, a CBCT scan was taken to correct any residual setup errors. After comparing the 

CBCT scan to the planning CT and shifting the phantom, the ears were removed, and the plan 

was delivered to the phantom.  Next, an output measurement of the TrueBeam was required 

from IROC where the TLD was irradiated. This involved setting up a TLD block on a plastic 

platform with a set SSD of 100 cm and a field size of 10x10 cm�.  

Following irradiation, the phantom was sent back to IROC along with isodose 

distributions in the coronal and sagittal planes through the center, screenshots showing the TLD 

contour, the DICOM information (CT, RD, RP, and RS files), and trajectory log files. The gamma 

analysis results for the film were deemed acceptable. A 5% dose difference and 3 mm distance 

to agreement were set as the tolerance values. The coronal and sagittal planes had a gamma 

index of 98% and 97%, respectively. Additionally, the TLD results were deemed acceptable as 

the average ratio of the measured recorded dose of the TLD as compared to UVH’s TPS 

recorded value was 1.01. The full report can be found in Appendix B. 

Winston Lutz Test  

Another QA performed, which is also recommended in the MPPG 9.a, is the Winston Lutz test.32 

This test allows for the verification of the congruency between the radiation and mechanical 

isocenters. The linear accelerator has three mechanical axis of rotation that includes the gantry, 

collimator, and couch. All three of these mechanical axes intersect at a point known as 
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isocenter. A small spherical radiopaque ball mounted onto a thin rod is attached to the 

treatment couch with various dials to adjust the position of the ball in the x, y, and z planes. The 

ball is approximately aligned to isocenter using the intersection of the lasers and evaluating the 

projection of the ball’s shadow relative to the light field cross hairs. Figure 15 displays the initial 

setup of the ball. 

 

 

Figure 15 - INITIAL WINSTON LUTZ ROD SETUP 

 

Once the ball is visually aligned, MV images using the EPID panel are taken at gantry angles of 0 

and 90 degrees. These images are used to further refine the placement of the ball to isocenter. 

This test was originally designed to test the coincidence of the radiation and the mechanical 

isocenter. However, with the incorporation of the imaging component, one can analyze the 

imaging and treatment coordinate coincidence and test the position and repositioning of the 

couch, based on the suggested shifts from the imaging system. Once the ball is aligned to 
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isocenter, a MV image is acquired for various combinations of the gantry, couch, and collimator 

angles.  These images are saved in a DICOM format and they are imported into a software 

program, such as PIPSPRO, for analysis. An example of the analysis is displayed in Figure 16 

where the ball's position relative to the field size is characterized. 

 

 
Figure 16 - WINSTON LUTZ ANALYSIS 

 

Performing this test satisfies many of the recommended QA tests outlined in TG 14233 

and MPPG 9a.30 These image pairs are taken using either a cone or with the MLCs. In all SRS 

cases, a cone could be used to perform the Winston Lutz test and only for MLC cases the MLCs 

may be used.  
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Monthly Output  

The constancy of the output for relevant dose rates of the accelerator for all photon and 

electron energies is verified. To measure the output of the 6 MV FFF beam (the energy 

commonly used in SRS cases), the gantry, collimator, and couch are set to 0 degrees. A 5 cm 

thick solid water phantom followed by a 2 cm thick solid water phantom with a hole drilled for 

an ion chamber is placed on the treatment couch. The 2 cm block contains inscribed black lines 

with an area of 10x10 cm�. The blocks are centered using the light field and the inscribed black 

lines with a set SSD of 100 cm. A thermometer is placed into that cavity to measure the 

temperature while a barometer is used to record the pressure. These two values are used to 

correct the ion chamber readings by accounting for the change in the mass of air present in the 

chamber. Next the thermometer is taken out of the cavity and a PR-06G farmer chamber is 

placed in its stead, and the chamber is connected to an electrometer with a voltage of 300 V. 

Once the block is setup, an additional 2 cm block is placed on top of the current setup, putting 

the chamber at a depth of 3 cm with a SSD of 98 cm. The SSD is set back to 100 cm by adjusting 

the vertical height of the couch. An example of this setup is displayed in Figure 17.  
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Figure 17 - MONTHLY WATER PHANTOM OUTPUT SETUP 

 

Once the setup is complete, 100 MU at a dose rate of 1400 MU/min is delivered to the 

ion chamber for a field size 10x10 cm� with a gantry angle of 0°. A 2nd reading is always taken 

for the first measured energy (6 MV) to verify constancy of the chamber. Finally, an energy 

measurement is taken by placing 25 brass plates on the central axis and an additional reading is 

recorded.  Figure 18 displays the readings taken through the 2019 year for output and energy 

verification.  
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Figure 18 - MONTHLY OUTPUT CHECK ON THE 6X FFF BEAM 

 

 

The results from Figure 18 showcase the all monthly output measurements were within 1% 

from baseline. Per MPPG 9.a. recommendation, the monthly output constancy is to be within 

2%. 

Electronic Portal Imaging Detector QA  

At the time of writing this document, there is not a formal document from the AAPM 

addressing Electronic Portal Imaging Dosimetry (EPID) based QA. Therefore, UVH’s EPID QA 

process is presented here to illustrate steps taken by the Radiation Oncology department to 

ensure proper operation of the EPID. The EPID QA tests are presented in Table 7. 

 

Table 7 - MONTHLY EPID QA 

EPID QA Checks 

Graticule Accuracy for Jaws & MLC 

X-ray vs. Light for Jaws & MLC 

Image Quality  

Dosimetric Constancy 

Integrated Image Alignment Accuracy 

Picket Fence Test 

Tongue & Groove Leakage 
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First a test is performed to evaluate the physical and digital graticule accuracy. The 

physical graticule is slid into the treatment head slot and an image is recorded on the panel. In 

offline review, the center from the physical graticule is compared to the digital graticule by 

determining the x and y discrepancies between the two. Next an x-ray vs. light field comparison 

is made by measuring the distances acquired at the time of image acquisition and the recorded 

image is then measured. The contrast resolution is assessed with the Las Vegas phantom by 

evaluating the number of distinguishable holes of different depth and diameter. A dosimetric 

calibration check is performed by delivering 100 MU to the panel and going into the PD 

workspace and analyzing the max CU recorded at the central axis and comparing this value to 

baseline. An image alignment accuracy is checked by using the PD software to match the 

expected dose distribution with the measured dose distribution. These values are tracked to 

serve as a constancy check of panel positioning vs. the treatment beam. A MLC performance 

test is conducted through the picket fence pattern where the MLCs move in unison to 

programmed positions with a small amount of MU delivered at each dwell position. This test is 

designed to identify any possible MLC positional or speed errors. Finally, a tongue and grove 

leakage constancy check is performed by measuring the highest recorded dose in units of CU 

measured with the MLCs in a closed position.  

Mechanical QA  
 

Mechanical quality assurance tests are performed on a monthly basis to ensure continuity in 

the accurate radiation delivery of the LINAC. The monthly mechanical checks are listed in Table 

8.  
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Table 8 - MONTHLY MECHANICAL QA 

Mechanical Checks: 

Gantry/Collimator Angle Indicators 

Collimator Walkout 

Graticule vs. Crosshair 

Mechanical Pointer & ODI Agreement 

X, Y Jaws Close Symmetrically Around Crosshair 

Field Size Check (Symmetrical & Asymmetrical) 

 

 

A digital leveler is placed onto the treatment head with the gantry at 270 degrees. The 

collimator is rotated until the leveler reads out the angle of interest. The collimator readout 

from the LINAC is then recorded. Figure 19 displays an example of the collimator angles tested 

with the corresponding measurement. 

 

 
Figure 19 - COLLIMATOR ANGLE INDICATOR 

 

Next, the gantry angle indicator is verified with the leveler by rotating the gantry to 

various angles of interest using the leveler and reading out the gantry angle. The recorded 

results are presented in Figure 20. 
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Figure 20 - GANTRY ANGLE INDICATOR 

  

Next, a 1 mm spaced grid paper is set on the treatment couch at 100 cm SSD. An 

intersection of the vertical and horizontal grid lines is aligned to the central axis light field cross 

hair. The gantry is returned to 0° and the collimator is rotated from 90° to 270° to discern any 

noticeable crosshair and light field walkout. Next, the collimator is closed along the crosshair to 

identify if there are any asymmetries. Figure 21 presents those recorded values. 

 

 
Figure 21 - COLLIMATOR WALKOUT AND SYMMETRY OF JAWS 

 

Next a comparison is made between the optical distance indicator as compared to the 

mechanical front pointer. Both measurements should read out a distance of 100 cm. The 

physical graticule is then slid onto the treatment head and its alignment is checked against the 
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light field graticule. Finally, the independent jaw readouts are compared by the light field 

projection onto the graph paper. This is done for all 4 jaws (X1, X2, Y1, & Y2) for various 

positions and again grouping the y and x jaws. Figure 22 and Figure 23 represent the jaw 

position measurements for the symmetry and asymmetry, respectively.  

 

 
Figure 22 - JAW POSITION INDICATORS (SYMMETRIC) 

 

 

 
Figure 23 - JAW POSITION INDICATORS (ASYMMETRIC) 
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Computed Tomography Quality Assurance  

Acquiring a CT scan allows for contouring and treatment planning. It is desirable to obtain an 

accurate dataset that best represents the patient’s anatomy with accurate image quality. 

Therefore, every month, the CatPhan 604 is scanned and a series of tests, as seen in Table 9, 

are performed to evaluate CT images.  

 

Table 9 - MONTHLY CT QA 

Monthly CT Simulator QA: Image 

Quality 

Image Noise & Uniformity 

HU Constancy 

Low Contrast, High Resolution 

In Plane Spatial Accuracy  

Longitudinal Spatial Accuracy 

 

The CT dataset that is evaluated every month is the SRS HEAD scan protocol which 

consists of 0.8 mm slices. Image noise and uniformity (from Table 9) is assessed by measuring 

the mean HU and standard deviation at the center of the phantom and then the HU at the 

following locations: 12, 3, 6, and 9’O clock. A region of interest of 1 cm by 1 cm is used when 

measuring the HU. This process is represented by Figure 24. The HU of each position is 

expected to be around 0 with an expected standard deviation of 20.  
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Figure 24 - IMAGE NOISE & UNIFORMITY 

  

Next a HU constancy check is performed by evaluating the various plugs. This is 

performed for the following materials: air, Teflon, Delrin, bone 20%, bone 50%, acrylic, 

polystyrene, LDPE, and PMP. Figure 25 displays the plugs present in the phantom. 

 

 
Figure 25 - HU CONSTANCY CHECK 
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Image quality is evaluated by assessing the high and low-resolution contrast. Figure 26 

represents low contrast test where the number of visible circles is counted and compared to a 

baseline.  

 

  
Figure 26 - OUTER LOW CONTRAST 
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Figure 27 represents the high contrast test where the number of distinguishable line pairs is 

counted and compared against baseline. 

 

 
Figure 27 - LINE PAIR RESOLUTION 

 

Finally, the constancy of the in-plane and the longitudinal spatial accuracy is evaluated 

measuring known distances between objects in the phantom. For example, measuring the 

distance between the two upper holes that gives a distance of 5 cm and measuring the diagonal 

distance between two of the holes yields a distance of 7.07 cm.  The in-plane and longitudinal 

measurements are displayed in Figure 28 and Figure 29, respectively.  
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Figure 28 - IN PLANE SPATIAL CONSTANCY 

 

 

 
Figure 29 - LONGITUDINAL SPATIAL CONSTANCY 
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Machine Performance Check 

Every morning when the therapists perform the daily QA to verify items such as the output, the 

positioning and repositioning of the couch based on imaging, and other tests, they also run the 

machine performance check (MPC).34 MPC is a software package supplied by Varian that 

performs geometry and beam checks for the LINAC and that data is displayed as a trend chart. 

A complete list of the checks as performed by MPC are listed in Table 10. 

 

Table 10 - MACHINE SPECIFICATIONS 

Geometry Checks Beam Checks 

Treatment Isocenter Size & Location 
Beam Output 

Constancy 

Coincidence Between Treatment Isocenter & MV 

& kV Imaging Isocenters 

Beam Profile 

Constancy 

Collimator Rotation Offset Beam Center Shift 

Gantry Positioning Accuracy  

Couch Position Accuracy for 6 DOF  

MLC Leaf Position for Inner Leaves  

 

 

This tool does not replace any of the existing QA performed by the department but is an 

extension of the QA program. Instead, it is complimentary to the current QA program as it 

provides an immense amount of high precision data on many critical sub-systems of the LINAC, 

serves as an independent check from the current QA program, and adds confidence to the 

LINAC performance. An example of the graphical user interface alongside the data displayed is 

shown in Figure 30. 
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Figure 30 - MACHINE PERFORMANCE CHECK DATA  

  

To give an example of MPC's utility, there was a slight but noticeable trend in the output 

increasing over time. The physicist performed an absolute calibration (TG5135) to bring the 

beam's output back down. However, before doing so, having the beam output measurement 

from MPC allowed the physicist to compare that value to the daily and monthly output 

measurements. It was found that the output measurement for all 3 measurements were in 

close agreement. Having this additional information from MPC is not critical, but it serves as an 

additional layer of quality assurance checks.   

ACR MR Image Analysis Instructions  
 

The American College of Radiology (ACR) MRI phantom was scanned to evaluate the image 

quality.36 The image quality parameters analyzed are listed in Table 11. These tests were 
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selected and performed per the guidance of the ACR guidance document that assists facilities in 

performing quality control and system performance testing.  

 

Table 11 - ARC MR INSTRUMENT PARAMETERS 

ACR MR Instrument Parameters 

Geometry Accuracy 

High-Contrast Spatial Resolution 

Slice Thickness Accuracy 

Slice Position Accuracy 

Image Intensity Uniformity  

Percent-Signal Ghosting 

Low-Contrast Object 

Detectability 

 

For SRS cases, having high spatial resolution devoid of geometric distortions is 

imperative especially due to the tight treatment margins. To evaluate distortions the geometric 

accuracy is tested which involves measuring lengths on the images and comparing these values 

to the known lengths of the phantom. Following the instructions of the ACR guidance 

document,36 the window level (WL) was adjusted to better visualize the phantom. Then 

measurements of the phantom in the in-plane and sagittal plane were measured to be ~190 

mm and 148 mm, respectively. Figure 31 & Figure 32 display the length measurements.  
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Figure 31 - INPLANE GEOMETRIC ACCURACY 

  

 

 
Figure 32 - SAGITTAL END TO END LENGTH MEASUREMENT 

 

The expected values of the inside diameter of the phantom and the end-to-end length of the 

phantom was 190 mm and 148 mm, respectively. The measured values are well within the 

action criteria as they are within 2 mm. The high-contrast spatial resolution test is performed 

when the scanner’s contrast-to-noise is high where the ability of the scanner is tested to 
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resolve small objects. In the ACR phantom there are 3 pairs of matrices that are squarish in 

shape. Each row and column are evaluated by determining if one hole is distinguishable from 

one another. Figure 33 represents the matrix of objects used for the high-contrast spatial 

resolution test. This process is repeated for the remaining two arrays where all holes in relation 

to the adjacent hole is evaluated on whether it is distinguishable from another. A 1 mm 

resolution is required which can be satisfied if some of the holes for the vertical and horizontal 

direction can be resolved in the middle array.  

 

 
Figure 33 - HIGH CONTRAST SPATIAL RESOLUTION 

 

The slice position accuracy test assesses if the slices are at specific locations.  This test analyzes 

the length differences between two bars (right and left). If the two bars differ by a length 

greater than 5mm, there may be a few different scenarios causing this test to fail. For example, 

a failure of this test may be due to the table positioning system. An example of the two bars is 

displayed in Figure 34. 
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Figure 34 - SLICE POSITION ACCURACY TEST 

 

To test for slice thickness accuracy the length of two signal ramps in the phantom are 

evaluated. The window level is adjusted to visualize ramps as seen in Figure 35. 

 

 
Figure 35 - SLICE THICKNESS ACCURACY (SIGNAL RAMPS) 
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Then, the mean ramp signal (HU) is measured and then the window level is lowered by half of 

the signal measured. Then, the length of the two ramps is measured and recorded. These two 

values are then used to calculate the slice thickness using Equation 5.  

 

CDE;F )ℎE;HIFJJ = 0.2 �L=∗MLNNL%
�L=OMLNNL%    [5] 

 

A large volume of water is analyzed in the phantom for uniformity of image intensity. This is 

performed by lowering the window level until the phantom displays the color white. Next, the 

lower level is raised until dark pixels develop, which displays the area of the lowest signal. This 

is represented by Figure 36. 

 

  
Figure 36 - IMAGE INTENSITY UNIFORMITY 
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Then the level is raised further until a small section of white pixels remain, which 

signifies the area with the highest signal. These two values are recorded and plugged into 

Equation 6 to calculate the percent integral uniformity (PIU). 

 P	: = 100 Q1 − STUSV>LW
STUSO>LWX    [6] 

To measure the quantity of ghosting artifact in the phantom, the percent signal ghosting test is 

used. 5 average signal measurements are taken. The first measurement is the HU measured 

across the phantom, and the other 4 are measured in the right, left, top, and bottom directions 

just outside of the phantom as seen in Figure 37. 

 

 
Figure 37 - PERCENT SIGNAL GHOSTING 

 

These recorded measurements are used to calculate the ghosting ratio using Equation 7. 

 �ℎYJZEI[ +\ZEY =  ]�L=OMN%V^,-NV�TUSN  
�∗�S&?NL% �_` ]   [7] 
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The last test performed is the low-contrast object detectability test. The purpose of this test is 

to discern objects of low contrast from other pixels. This test is performed by adjusting the WL 

until the low contrast circles are visible (See Figure 38). 

 

  
Figure 38 - LOW-CONTRAST OBJECT DETECTABILITY 

  

Then, starting with the largest diameter circle, the number of circles visible in that spoke 

are counted. A spoke is considered to be visible if all three are counted. Then, the next circles 

with a slightly smaller diameter are counted. This process is repeated once all visible spokes are 

counted. 
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Future Equipment and Technology  
 

HyperArc 
 

HyperArc37 is an additional software package offered through Varian that streamlines clinical 

workflow for SRS cases. This software simplifies the treatment planning and treatment delivery 

process and provides additional tools to assess the quality of a treatment plan. As advertised on 

Varian’s website, the dosimetrist has access to tools that optimize the dose and the treatment 

delivery while receiving feedback on the plan quality. Additionally, the software will provide 

suggestions on imaging way points, it provides a tool to visualize the treatment delivery 

sequence, and it requires less therapist user input during treatment delivery. Acquisition of this 

product will reduce the investment of resources (e.g. dosimetrist planning time, beam delivery 

time, etc.), which in turn will allow resources to be redirected to other areas. This scenario is 

particularly favorable when UVH is experiencing high patient volumes.  

Independent MU verification algorithm 

The 3-Source algorithm in IMSure algorithm provides a 2nd independent check on the dose and 

MUs that were to be delivered to the patient. This algorithm was sufficient when providing 

these checks for standard 3DCRT plans, IMRT plans, and for VMAT plans. However, with the 

advent of small fields in SRS and SBRT and treating in heterogeneities, there have been 

considerable discrepancies between the IMSure algorithm and the primary dose calculation 

algorithm, Acuros. Therefore, the Radiation Oncology department is currently exploring 

modern 3D algorithms that can better account for heterogeneities and small fields. Varian 

Mobius 3D, Sun Nuclear DoseCheck and IBA SciMoCa are all being actively compared to serve 

this purpose.38–40  
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SRS MapCheck 

Using film to verify dose planes for SRS plans is resource intensive which requires a physicist to 

prepare the phantom with film, to find time available to use the treatment machine, and post 

processing before a comparison can be made. This process is especially demanding in times 

when there is a high workload of patients being treated during the day which will limit the 

physicists’ opportunity to use the machine during normal working hours and when their time is 

devoted to other tasks in the department. A tool that is capable of measuring SRS dose planes 

and providing near instantaneous feedback would eliminate many of the challenges as 

described above. One tool being capable of offering this kind of utility is the SRS Mapcheck.41 

This device is composed of 1,013 diode detectors in an active area of 7.7 cm to 7.7 cm. This 

device is capable of measuring multiple planes of dose and it is able to take the 3D dose DICOM 

file from the treatment plan that is exported from the Eclipse TPS and import into the SRS 

Mapcheck software. From there, it is able to make gamma analysis comparisons of the dose 

being delivered to the dose calculated by the TPS. The UVH Radiation Oncology department is 

expecting to purchase this equipment in 2020. It is expected that this equipment will replace 

the film QA process and utilize less resources from the department.  

  



www.manaraa.com

 

65 
 

Conclusion 

Utah Valley Hospital was charged with implementing a SRS program as an additional line of 

service. The deliverable was a timely, validated SRS program. This required a significant 

undertaking from the physics team, but also the dosimetrists, therapists, physicians, and 

management. The process first began with each physicist brainstorming various items that 

would need to be completed before implementing the program and conversing with various 

staff members to receive their input. For example, one notable conversation was whether to 

commission the cones in the department. Once the physics team had created a list of all the 

items needed for the SRS program, it was set into motion. One of those items was the 

evaluation of the patient specific QA to ensure that those tests were adequate. For example, 

one item of concern was using the IC point dose measurement to compare the measurement to 

the TPS value. Since SRS uses small fields it was a concern that the differences between the two 

values may be considerable as the field sizes became smaller. Then there were efforts into 

validating the beam delivery process and incorporating a patient specific QA process that was 

representative of an E2E test. This invoked the use of the gafchromic film in previous 

stereotactic body radiation therapy treatments to test the workflow of this QA process and the 

feasibility of it. Next an independent E2E validation test was performed with the SRS head 

phantom (HAMLET) that was provided by IROC. While these projects were being conducted on 

the beam delivery, there were also efforts put forth in researching various metrics to include 

when evaluating a SRS plan. Finally, there were meetings between various individuals to set up 

processes related to the program. For example, a physicist met with MR staff members to 

discuss which scan protocols would provide the most valuable MR images and receiving scans 
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of the ARC MRI phantom to evaluate the image quality. An additional example is the radiation 

oncologists and physicists meeting with the neurosurgeons to involve their clinical expertise 

with these SRS cases.  After validating the SRS program and treating the first couple of cases, 

additional efforts were made to improve upon the clinical workflow and processes. For 

example, it is expected that the size of Provo, Utah, where UVH is located, will continue to grow 

in population and thus the workload for department staff will increase. To account for the 

growing population, additional purchases have been made on technologic upgrades. For 

example, acquisition of HyperArc and SRS Mapcheck is expected to decrease the time required 

to plan, QA the plan, and to treat the patient. Lastly, while this document displays the 

significance of various steps, it is important to recognize that implementing a SRS program 

should be viewed as a dynamic process. The radiation therapy field is constantly changing, and 

new technology is becoming available which simplifies many of the mundane and/or 

undesirable tasks. For example, only recently has frameless SRS treatments performed on 

LINACs become easily achieved on a general use LINAC. A large part of this change was due to 

the introduction of surface tracking that replaced the need for frame-based SRS programs. Also, 

within the UVH Radiation Oncology department, attempts have been made that hold true to 

this dynamic philosophy. For example, one of the physicists proposed adding a Styrofoam 

mannequin face mounted on a slab as an add on to the stereotactic dose verification phantom. 

The idea was to integrate the VisionRT tracking system into the IC measurement QA to measure 

the absolute dose of a point while characterizing the VisionRT shift readouts throughout the QA 

process. Although this idea was tabled, it is true to the virtue of recognizing the fluidity of an 

ever-changing field.  
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Appendix A: Film QA 
Film fragment calibration technique: 

Gafchromic RTQA2 Film & Espon 10000XL Flat Bed Scanner are used 

 

1. A sheet of Gafchromic RTQA2 film is taken and cut up into 12 squares each 

measuring 6.35 cm by 6.35 cm 

 

2. Set a 5 cm water equivalent block on the treatment couch and set the SSD readout 

on the block to 100 cm   

 

3. Create a 10x10 ;<� field, center the water block to the light field cross hair, and 

place the film square on the water block and center it to the light field cross hair 

 

4. Place a 5 cm water equivalent block on top of the film and water block. Each film 

piece is irradiated to a different dose to reconstruct the sensiometric curve. See 

Table 12 for a representative list of dose values  

 

Table 12 - SENSIOMETRIC CURVE DATA FOR 10 FFF 

10FFF D5TMR  0.952 

Film at 100SAD/Isocenter 

Dose 

(cGy) MU  
0 0  

25 26  
50 53  
75 79  

100 105  
150 158  
200 210  
300 315  
400 420  
500 525  
600 630  
700 735  

 

 

5. Irradiate the film square using the appropriate MU to the specified dose (as seen in 

Table 12) 
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6. Once irradiated, place a sticky note onto the back of each film piece with the known 

MU and dose to distinguish it from the other irradiated film pieces 

 

7. Repeat the steps above to irradiate additional pieces of film to a different dose 

 

8. Scan each film piece following the writeup titled, “Film Scanning” 

 

9. Open ImageJ and drag one of the film scans into the software 

 

10. Select “Image”, “Color”, “Split Channels” and close all windows except the red 

channel 

 

11. Left click on the image and drag a region of interest box over the area to be 

measured 

 

12. Press “Control m” to record the measured optical density  

 

13. Record this value as it relates the OD to dose. Repeat steps 11-12 for all film 

fragments 

 

Gafchromic RTQA2 film irradiation for patient specific plans 

 

1. Create verification plan using Pt. ID sp11/04/2016.  Image set: Film-V-512-0.8 

a. This is the blue phantom in film configuration, vertical orientation, 512 axial 

matrix, 0.8mm slices 

 

2. Verify the dose distributions of interest fall intersect the position of the film on the 

CT. If the dose distributions are not intersecting the film, the isocenter may need to 

be shifted. 

  

3. Approve the plan (planning approved) and schedule it for delivery on the TrueBeam 

  

4. While wearing gloves, cut out a 6.35 cm by 6.35 cm film square and place it in onto 

the film slab from the blue cube phantom (2 corners of the film may be clipped to 

ensure a good fit) 

 

5. Place the film slab with the other film slabs onto the two anchors embedded in the 

bottom component of the blue cube. Lastly place the remaining blue cube 

component and tighten with provided screws 
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6. Align the blue cube phantom to the lasers in the treatment vault and use the light 

field crosshair to make any final adjustments 

 

 

7. Pull up the patient specific film QA plan and acquire a cone beam CT to further align 

the phantom and irradiate the phantom with the embedded film 

 

8. Irradiate the phantom with the embedded film using all arcs 

 

 

Film Scanning  

 

1. All films scanned should be placed near the center of the scanner to avoid lateral 

scan effects and should be straightened out (void of rotations). The ROI tool can 

assist in identifying significant rotations.  

 

2. Once the film is placed onto the scanner, the following scan parameters listed below 

are used (See Figure 39) 

 

 

 
Figure 39 - FILM SCAN PARAMETERS 

  

 

3. Once all image correction options are turned off, the film can be scanned 
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4. All scanned films are saved in the TIFF file format 

 

 

Comparison of an axial TPS dose plane compared to an axial dose on film 

 

1. Open the ImageJ software 

 

2. Drag in the scanned patient specific QA film image  

 

3. Select “Image”, “Color”, “Split Channels”.  Close green and blue channel 

windows, leaving only the red channel 

 

4. Select “Image” and “Crop” to only include the region of interest on the film. 

Ensure the film dimensions are equal (e.g. 512 x 512). Record the pixel size and 

length in inches for the rows and columns (This information is used later). 

Calculate the resolution by multiplying the length [inches] by 25.4 and divide by 

the pixels (e.g. 2.5 inch * 25.4 mm/inch / 512 = 0.124 mm/pixel) 

 

5. Pull up the sensiometric curve values (dose and OD) generated from the “Film 

fragment calibration technique” In Image J, select “Analyze” then “Calibrate”.  

Function: 3rd Degree Polynomial, Unit: cGy, type in dose values for each film on 

Right side. Select “Yes” Global Calibration. Save, OK 

 

6. Select “process” then “filters” and “median” and type in the value of 3 to filter 

out irregularities in the film 

 

7. Using the following header (Figure 40) below, paste to matrix of dose values just 

under the [Data] row. 
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Figure 40 - PORTAL DOSIMETRY TEXT DATA FILE 

 

[General] 

FileFormat=Generic Dosimetry Exchange Format 

Version=1.0 

Creator=Review 

CreatorVersion=7.1.35 

[Geometry] 

Dimensions=2 

Axis1=X 

Size1=[*NEED TO ENTER FIRST PIXEL SIZE* e.g. 512] 

Res1= [*NEED TO ENTER RESOLUTION IN MM* e.g. 0.124] 

Offset1=0 

Unit1=mm 

Separator1=\t 

Axis2=Y 

Size2= [*NEED TO ENTER SECOND PIXEL SIZE* e.g. 512] 

Res2= [*NEED TO ENTER RESOLUTION IN MM* e.g. 0.124] 

Offset2=0 

Unit2=mm 

Separator2=\n 

[Interpretation] 

Type=Acquired Portal 

DataType=%f 

Unit=CU 

Location=Imager 

Medium=Ion Chamber 

[Patient] 

PatientId1= 1000000 

PatientId2= 

LastName= John 

FirstName= Doe 

[Field] 

PlanId= 1111111111 

FieldId= 2 

ExternalBeamId=Toestel 5 

BeamType=Photon 

Energy=6 

SAD=100 

Scale=IEC1217 

GantryAngle=0 

CollRtn=0 

CollX1=-2 

CollX2=2 

CollY1=-2 

CollY2=2 

[PortalDose] 

SID=100 

Date=01/20/2020, 13:25:33 

[Data] 

[*ENTER ALL DATA VALUES BELOW*] 
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8. In (Figure 40) update the size and resolution rows using the values calculated 

and recorded from step 7 

 

9. More information can be updated for accuracy, but it’s not required to 

successfully import into the Portal Dosimetry workspace 

 

10. Save the text file in the .dxf format with the following name “Film QA Data” 

 

11. Next the TPS axial plane of dose must be exported and formatted for Portal 

Dosimetry import. Open the patient film QA plan created in the “Gafchromic 

RTQA2 film irradiation for patient specific plans” writeup 

 

12. Right click the dose and export the dose plane corresponding to the center of the 

film. Make sure the axial plane window is selected.  

 

13. The following is selected when exporting the axial dose plane to a local folder: 

Absolute dose; Planar plan dose; Size-6.35 cm, Pixels-512 

 

14. Import the file created in step (13) (Disregard message saying image is 

incompatible with calibration) 

 

15. Select “Image” and “Show info” (See Below) 

 
 

16. Record the last line This last line is the conversion of image values to Gy.  To 

convert to cGy multiply by 100.  

 

17. Select “Process” then “Math” then “Multiply” and enter value from above to 

convert to cGy. 

 

18. Select “File” then “Save As” and “Text Image” 

 

19. Repeat steps 7-9 above for this file 

 

20. Save the text file in the .dxf format with the following name “TPS Data” 
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21. Import both .dxf files (“TPS DATA” and “Film QA Data”) into Portal Dosimetry to 

perform a Gamma Analysis comparison. 
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Appendix B: Stereotactic Radiosurgery Head Phantom Irradiation Results 
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Treatment Planning System QA: 
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